被牽引センシングユニットによる配管経路図作成
本研究室では,長年に亘り老朽化した配管設備を点検するためのロボット研究を行なってきました.しかし,仮に破損箇所や老朽箇所をカメラなどで特定できたとしても,入口から見てどの位置にあるかがわからなければ効率的な補修・交換作業は困難となります.特に高度経済成長期前後に敷設された配管の図面には経路の長さや
本研究室では,長年に亘り老朽化した配管設備を点検するためのロボット研究を行なってきました.しかし,仮に破損箇所や老朽箇所をカメラなどで特定できたとしても,入口から見てどの位置にあるかがわからなければ効率的な補修・交換作業は困難となります.特に高度経済成長期前後に敷設された配管の図面には経路の長さや
近年,水中ロボットへの期待が高まっており,AUV(Autonomous Underwater Vehicle)と呼ばれる自律無人潜水機やROV(Remotely operated vehicle)と呼ばれる水中ドローンなどの研究開発が盛んに行われています.これらのロボットの多くには電動のブラシレス
ロボット工学の歴史において,ロボットとそのアクチュエータのエネルギー消費を削減するために弾性体の利用がしばしば注目されてきました.その代表例がこちらでも紹介した直列弾性アクチュエータ(Series Elastic Actuator,通称SEA)です。一方,並列弾性アクチュエータ(Parallel
従来のロボットの多くは高減速比ギアや金属製の筐体部品など,高剛性の要素のみで構成されているため,外部環境との接触に対して柔軟な反応が困難でした.これを解決する方法として減速機とロボットの関節出力軸の間に弾性体を備えた直列弾性アクチュエータ(Series Elastic Actuator,通称SEA
配管内走行ロボットは曲管の走行方法に着目して,以下の2 つの形態に分類できます.1.関節を回転自在にして経路に合わせて受動的に形状変化させながら走行する形態この形態のロボットは,アクチュエータ数の削減により機構を単純化できる利点がありますが,T字管などの分岐路において経路を選択でき
本研究室で研究してきたM字型の構造を使えば,配管内で関節を突っ張らせることにより,車輪と壁面の接触を維持でき,高い曲管・T字管適応性と牽引性能を実現できることが明らかとなりました.また,車軸と関節軸を共通化することにより,リンクの可動範囲を大きく取れるため,適応内径の範囲も大きくできる利点がありま
ロボットの機械的接触作業を可能にするための技術として,減速機摺動部の摩擦を減らす取り組みが多数報告され始めています.これには,伝達系のエネルギ散逸を減らすことで,サーボモータに古くから備わっている電流センサを利用して小さな外力を可能な限り高精度に検出する狙いがあります.小さな外力で出力軸が機械的に
ばねなどの弾性体は弾くと振動します.この状態では,弾性エネルギと運動エネルギの変換が行われ,エネルギ散逸による損失が無ければ永遠に振動し続けます(単振動).一方,ロボットにも振動のような周期的な運動が必要になることがあります.例えば脚を使った歩行運動,マニピュレータのピックアンドプレイス,ヘビ型ロ
ガス,上下水道,空調などに用いられる配管設備のメンテナンスは都市社会において人類が直面する大きな課題の一つとなっています.特に,地下や高層ビルに設置されたものについては,外から点検することが困難なため,老朽化したパイプの特定に莫大なコストと時間を要します.一般的な配管検査において,これまで